Hydrogen sulphide induces μ opioid receptor-dependent analgesia in a rodent model of visceral pain

نویسندگان

  • Eleonora Distrutti
  • Sabrina Cipriani
  • Barbara Renga
  • Andrea Mencarelli
  • Marco Migliorati
  • Stefano Cianetti
  • Stefano Fiorucci
چکیده

BACKGROUND Hydrogen sulphide (H2S) is a gaseous neuro-mediator that exerts analgesic effects in rodent models of visceral pain by activating KATP channels. A body of evidence support the notion that KATP channels interact with endogenous opioids. Whether H2S-induced analgesia involves opioid receptors is unknown. METHODS The perception of painful sensation induced by colorectal distension (CRD) in conscious rats was measured by assessing the abdominal withdrawal reflex. The contribution of opioid receptors to H2S-induced analgesia was investigated by administering rats with selective mu, kappa and delta opioid receptor antagonists and antisenses. To investigate whether H2S causes mu opioid receptor (MOR) transactivation, the neuronal like cells SKNMCs were challenged with H2S in the presence of MOR agonist (DAMGO) or antagonist (CTAP). MOR activation and phosphorylation, its association to beta arrestin and internalization were measured. RESULTS H2S exerted a potent analgesic effects on CRD-induced pain. H2S-induced analgesia required the activation of the opioid system. By pharmacological and molecular analyses, a robust inhibition of H2S-induced analgesia was observed in response to central administration of CTAP and MOR antisense, while kappa and delta receptors were less involved. H2S caused MOR transactivation and internalization in SKNMCs by a mechanism that required AKT phosphorylation. MOR transactivation was inhibited by LY294002, a PI3K inhibitor, and glibenclamide, a KATP channels blocker. CONCLUSIONS This study provides pharmacological and molecular evidence that antinociception exerted by H2S in a rodent model of visceral pain is modulated by the transactivation of MOR. This observation provides support for development of new pharmacological approaches to visceral pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of μ-opioid receptor in parafascicular nucleus of thalamus on morphine-induced antinociception in a rat model of acute trigeminal pain

The parafascicular nucleus (PFN) of thalamus, as a supraspinal structure, has an important role in processing of nociceptive information. In addition, μ-opioid receptor contributes to supraspinal modulation of nociception. In the present study, the effects of microinjection of naloxone (a non-specific opioid-receptor antagonist) and naloxonazine (a specific μ-opioid receptor antagonist) were in...

متن کامل

Brainstem facilitations and descending serotonergic controls contribute to visceral nociception but not pregabalin analgesia in rats

Pro-nociceptive ON-cells in the rostral ventromedial medulla (RVM) facilitate nociceptive processing and contribute to descending serotonergic controls. We use RVM injections of neurotoxic dermorphin-saporin (Derm-SAP) in rats to evaluate the role of putative ON-cells, or μ-opioid receptor-expressing (MOR) neurones, in visceral pain processing. Our immunohistochemistry shows that intra-RVM Derm...

متن کامل

Effect of the cholinergic and opioid receptor mechanisms on nicotine-induced analgesia

  In this study, we investigated the effect of nicotinic receptor agonists and antagonists on the analgesic response to morphine in the formalin test. In experiments conducted in mice, nicotine produced an early dose-dependent analgesic effect. At a dose of 0.5 mg/kg, mecamylamine, a nicotinic receptor inhibitor, suppressed the analgesic effect induced by 0.1 mg/kg nicotine in both stages of th...

متن کامل

(-)-Pentazocine induces visceral chemical antinociception, but not thermal, mechanical, or somatic chemical antinociception, in μ-opioid receptor knockout mice

BACKGROUND (-)-Pentazocine has been hypothesized to induce analgesia via the κ-opioid (KOP) receptor, although the involvement of other opioid receptor subtypes in the effects of pentazocine remains unknown. In this study, we investigated the role of the μ-opioid (MOP) receptor in thermal, mechanical, and chemical antinociception induced by (-)-pentazocine using MOP receptor knockout (MOP-KO) m...

متن کامل

The opioid placebo analgesia is mediated exclusively through μ-opioid receptor in rat.

Placebo analgesia is one of the most robust and best-studied placebo effects. Recent researches suggest that placebo analgesia activated the μ-opioid receptor signalling in the human brain. However, whether other opioid receptors are involved in the placebo analgesia remains unclear. We have previously evoked placebo responses in mice (Guo et al. 2010, 2011) and these mice may serve as a model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010